The D0 Ig-like domain plays a central role in the stronger binding of KIR3DL2 to B27 free H chain dimers.
نویسندگان
چکیده
We proposed that the killer cell Ig-like receptor KIR3DL2 binding more strongly to HLA-B27 (B27) β2-microglobulin free H chain (FHC) dimers than other HLA-class I molecules regulates lymphocyte function in arthritis and infection. We compared the function of B27 FHC dimers with other class I H chains and identified contact residues in KIR3DL2. B27 FHC dimers interacted functionally with KIR3DL2 on NK and reporter cells more strongly than did other class I FHCs. Mutagenesis identified key residues in the D0 and other Ig-like domains that were shared and distinct from KIR3DL1 for KIR3DL2 binding to B27 and other class I FHCs. We modeled B27 dimer binding to KIR3DL2 and compared experimental mutagenesis data with computational "hot spot" predictions. Modeling predicts that the stronger binding of B27 dimers to KIR3DL2 is mediated by nonsymmetrical complementary contacts of the D0 and D1 domains with the α1, α2, and α3 domains of both B27 H chains. In contrast, the D2 domain primarily contacts residues in the α2 domain of one B27 H chain. These findings provide novel insights about the molecular basis of KIR3DL2 binding to B27 and other ligands and suggest an important role for KIR3DL2-B27 interactions in controlling the function of NK cells in B27(+) individuals.
منابع مشابه
KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis.
The human leukocyte Ag HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 can be expressed at the cell surface of APC as both classical β2-microglobulin-associated B27 and B27 free H chain forms (FHC), including disulfide-bonded H chain homodimers (termed B27(2)). B27 FHC forms, but not classical B27, bind to KIR3DL2. HLA-A3, which is not associated with spondyloarthritis (S...
متن کاملTh17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis.
CD4 Th cells producing the proinflammatory cytokine IL-17 (Th17) have been implicated in a number of inflammatory arthritides including the spondyloarthritides. Th17 development is promoted by IL-23. Ankylosing spondylitis, the most common spondyloarthritis (SpA), is genetically associated with both HLA-B27 (B27) and IL-23R polymorphisms; however, the link remains unexplained. We have previousl...
متن کاملThe arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09
OBJECTIVES HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:...
متن کاملNew perspectives on the ligands and function of the killer cell immunoglobulin-like receptor KIR3DL2 in health and disease
KIR3DL2/CD158k/p140 is a three domain killer cell immunoglobulin-like receptor incorporating cytoplasmic immunoreceptor tyrosine inhibitory motifs, expressed as a disulphide-bonded dimer. KIR3DL2 is a framework gene within the KIR locus and is highly polymorphic, with 62 allelic variants possibly coding for protein reported. KIR3DL2 binds to HLA-A3 and -A11 in a peptide-dependent fashion and to...
متن کاملTargeted Delivery of the HLA-B∗27-Binding Peptide into the Endoplasmic Reticulum Suppresses the IL-23/IL-17 Axis of Immune Cells in Spondylarthritis
Ankylosing spondylitis (AS) is highly associated with the expression of human leukocyte antigen-B27 (HLA-B∗27). HLA-B∗27 heavy chain (B27-HC) has an intrinsic propensity to fold slowly, leading to the accumulation of the misfolded B27-HC in the endoplasmic reticulum (ER) and formation of the HLA-B∗27 HC homodimer, (B27-HC)2, by a disulfide linkage at Cys-67. (B27-HC)2 displayed on the cell surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 194 4 شماره
صفحات -
تاریخ انتشار 2015